Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(3): 3250-3261, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284075

RESUMO

Fossil energy carriers cannot be totally replaced, especially if nuclear power stations are stopped and renewable energy is not available. To fulfill emission regulations, however, points such as emission sources should be addressed. Besides desulfurization, carbon capture and utilization have become increasingly important engineering activities. Oxyfuel technologies offer new options to reduce greenhouse gas emissions; however, the use of clean oxygen instead of air can be dangerous in the case of certain existing technologies. To replace the inert effect of nitrogen, carbon dioxide is mixed with oxygen gas in the case of such air combustion processes. In this work, the features of carbon capture in five different flue gases of air combustion and such oxyfuel combustion where additional carbon dioxide is mixed with clean oxygen are studied and compared. The five different flue gases originate from the gas-fired power plant, coal-fired power plant, coal-fired combined heat and power plant, the aluminum production industry, and the cement manufacturing industry. Monoethanolamine, which is an industrially preferred solvent for carbon dioxide capture from gas streams at low pressures, is selected as an absorbent, and the same amount of carbon dioxide is captured; that is, always that amount of carbon dioxide is captured, which is the result of the fossil combustion process. ASPEN Plus is used for mathematical modeling. The results show that the oxyfuel combustion cases need significantly less energy, especially at high carbon dioxide removal rates, e.g., higher than 90%, than that of the air combustion cases. The savings can even be as high as 84%. Moreover, 100% carbon capture was also be completed. This finding can be due to the fact that in the oxyfuel combustion cases, the carbon dioxide concentration is much higher than that of the air combustion cases because of the inert carbon dioxide and that higher carbon dioxide concentration results in a higher driving force for the mass transfer. The oxyfuel combustion processes also show another advantage over the air combustion processes since no nitrogen oxides are produced in the combustion process.

2.
Environ Sci Technol ; 57(36): 13449-13462, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37642659

RESUMO

Assessing the prospective climate preservation potential of novel, innovative, but immature chemical production techniques is limited by the high number of process synthesis options and the lack of reliable, high-throughput quantitative sustainability pre-screening methods. This study presents the sequential use of data-driven hybrid prediction (ANN-RSM-DOM) to streamline waste-to-dimethyl ether (DME) upcycling using a set of sustainability criteria. Artificial neural networks (ANNs) are developed to generate in silico waste valorization experimental results and ex-ante model the operating space of biorefineries applying the organic fraction of municipal solid waste (OFMSW) and sewage sludge (SS). Aspen Plus process flowsheeting and ANN simulations are postprocessed using the response surface methodology (RSM) and desirability optimization method (DOM) to improve the in-depth mechanistic understanding of environmental systems and identify the most benign configurations. The hybrid prediction highlights the importance of targeted waste selection based on elemental composition and the need to design waste-specific DME synthesis to improve techno-economic and environmental performances. The developed framework reveals plant configurations with concurrent climate benefits (-1.241 and -2.128 kg CO2-eq (kg DME)-1) and low DME production costs (0.382 and 0.492 € (kg DME)-1) using OFMSW and SS feedstocks. Overall, the multi-scale explorative hybrid prediction facilitates early stage process synthesis, assists in the design of block units with nonlinear characteristics, resolves the simultaneous analysis of qualitative and quantitative variables, and enables the high-throughput sustainability screening of low technological readiness level processes.


Assuntos
Clima , Éteres Metílicos , Estudos Prospectivos , Ensaios de Triagem em Larga Escala , Esgotos
3.
ACS Omega ; 8(1): 726-736, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36643515

RESUMO

The aim of process integration is the efficient use of energy and natural resources. However, process integration can result in a more precise process operation, that is, it influences controllability. Pressure-swing distillation processes are designed for the separation of azeotropic mixtures, but their inherent heat integration option can be utilized to significantly reduce their energy consumption. One maximum-boiling and three minimum-boiling azeotropes are considered to study and compare the nonintegrated and integrated alternatives with the tool of mathematical modeling where ASPEN Plus and MATLAB software are used. The results show that the heat-integrated alternatives result in 32-45% energy savings that are proportional to the emission reduction and the consumption of natural resources. As far as the operability is concerned, the heat-integrated alternatives show worse controllability features than the nonintegrated base case. This can be due to the loss of one controllability degree of freedom. This recommends using more sophisticated control structures for the sake of safe operation if process integration is applied.

4.
Bioresour Technol ; 365: 128071, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36257525

RESUMO

This study investigates the formic acid-mediated hydrothermal carbonisation (HTC) of microalgae biomass to enhance green hydrogen production. The effects of combined severity factor (CSF) and feedstock-to-suspension ratio (FSR) are examined on HTC gas formation, hydrochar yield and quality, and composition of the liquid phase. The hydrothermal conversion of Chlorella vulgaris was investigated in a CSF and FSR range of -2.529 and 2.943; and 5.0 wt.% - 25.0 wt.%. Artificial neural networks (ANNs) were developed based on experimental data to model and analyse the HTC process. The results show that green hydrogen formation can be increased up to 3.04 mol kg-1 by applying CSF 2.433 and 12.5 wt.% FSR reaction conditions. The developed ANN model (BR-2-11-9-11) describes the hydrothermal process with high testing and training performance (MSEz = 1.71E-06 & 1.40E-06) and accuracy (R2 = 0.9974 & R2 = 0.9781). The enhanced H2 yield indicates an effective alternative green hydrogen production scenario at low temperatures using high-moisture-containing biomass feedstocks.


Assuntos
Chlorella vulgaris , Carbono , Temperatura , Biomassa , Redes Neurais de Computação , Hidrogênio
5.
ACS Omega ; 7(21): 17670-17678, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35664587

RESUMO

The number of newly synthesized and produced organic chemicals has increased extremely quickly. However, the measurements of their physical properties, including their vapor-liquid equilibrium (VLE) data, are time-consuming. It so happens that there is no physical property data about a brand-new chemical. Therefore, the importance of calculating their physicochemical properties has been playing a more and more important role. 4,6-Dichloropyrimidine (DCP) is also a relatively new molecule of high industrial importance with little existing data. Therefore, their measurements and the comparison with the calculated data are of paramount concern. DCP is a widespread heterocyclic moiety that is present in synthetic pharmacophores with biological activities as well as in numerous natural products. Isobaric VLE for the binary system of 4,6-dichloropyrimidine and its main solvent monochlorobenzene (MCB) was measured using a vapor condensate and liquid circulation VLE apparatus for the first time in the literature. Density functional-based VLE was calculated using the COSMO-SAC protocol to verify the laboratory results. The COSMO-SAC calculation was found to be capable of representing the VLE data with high accuracy. Adequate agreement between the experimental and calculated VLE data was acquired with a minimal deviation of 3.0 × 10-3, which allows for broader use of the results.

6.
ACS Omega ; 6(51): 35355-35362, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34984267

RESUMO

The controllability study is an integral part of chemical process design. In this work, the controllability of two special distillation techniques, extractive distillation and pressure swing distillation, designed for the separation of azeotropic mixtures is investigated with dynamic tools. The control design interface of Aspen Plus and Matlab are applied for the modeling and evaluation of the two systems. Dynamic controllability indices are determined and aggregated in a desirability function. The results are compared to obtain efficient help for process design activity. The pressure swing distillation shows significantly better controllability features than the extractive distillation. The reason can be the fact that in the case of the extractive distillation, a third compound, the extractive agent, is added to the system to carry out the separation, therefore making the system more complex. As far as the selection of manipulated variables is concerned, in the case of the extractive distillation, the reflux flows should be preferred to the reflux ratios but in the case of the pressure swing distillation, the reboiler heat loads are preferred to the reflux ratios since those are closer to the controlled compositions. Both separation systems show worse controllability features if the product purity requirement is approaching to the pure products, that is, close to 100%. Although the energy consumption of the pressure swing distillation is higher than that of the extractive distillation, it has the inherent feature that it can be automatically heat integrated due to a column operated at high pressure and, as a consequence, higher temperatures.

7.
Membranes (Basel) ; 10(12)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348791

RESUMO

Encouraged by the industrial problem of removing water from methanol solutions, a simple exfoliation method is applied to prepare polyvinyl alcohol (PVA)/laponite nanoclay mixed matrix membranes (MMMs). The membranes are used for the pervaporative dehydration of the methanol-water solution. The influence of the nanoclay content on the pervaporation performance is investigated. The results show that the PVA10 membrane containing 10 wt% Laponite loading exhibits excellent separation efficiency; therefore, all the experimental work is continued using the same membrane. Additionally, the effects of feed concentration and temperature on methanol dehydration performance are thoroughly investigated. The temperatures are ranging from 40-70 °C and the water feed concentrations from 1-15 wt% water. A maximum separation factor of 1120 can be observed at 40 °C and the feed water concentration of 1 wt%. Remarkably, two solution-diffusion models, the Rautenbach (Model I) and modified method by Valentínyi et al. (Model II), are used and compared to evaluate and describe the pervaporation performance of the mixed matrix membrane. Model II proves to be more appropriate for the modeling of pervaporative dehydration of methanol than Model I. This work demonstrates that PVA/nanoclay mixed matrix membranes prepared can efficiently remove water from methanol aqueous solution with pervaporation and the whole process can be accurately modeled with Model II.

8.
ACS Omega ; 5(50): 32373-32385, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33376874

RESUMO

The exfoliation method was applied for the preparation of high-water selective mixed matrix membranes (MMMs), especially for the dehydration of C1-C3 alcohol-water solutions. Herein, a facile and easy method was employed to fabricate physically cross-linked Laponite nanosilicate clay-PVA MMMs without additional cross-linking by a one-step synthesis route for water dehydration from methanol, ethanol, and isopropanol aqueous solutions. The morphologies, chemical structures, thermal stabilities, and surface hydrophilicity of Laponite-PVA MMMs were investigated properly by different characterization techniques. The Laponite concentration has affected the fractional free volume of the membranes, as proven by positron annihilation lifetime spectroscopy analysis. The MMMs displayed both a significant improvement in the separation factor and remarkable enhancement in the permeation fluxes for the three alcohol systems. The influence of the operating temperature on the MMM performance was investigated for the methanol/water solution. The methanol permeability was 100-fold lower than that of the water, indicating that the membranes are more water selective. Particularly, the Laponite-PVA membrane with 5 mg/mL Laponite loading exhibits excellent separation efficiency for C1-C3 dehydration having water permeabilities higher than most other polymeric membranes from the other literature studies of 2.82, 2.08, and 1.56 mg m-1 h-1 kPa-1 for methanol, ethanol, and isopropanol/water systems, respectively. This membrane development allows a more efficient and sustainable separation of aqueous alcoholic mixtures.

9.
Membranes (Basel) ; 10(11)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207643

RESUMO

It can be stated that in the fine chemical industries, especially in the pharmaceutical industry, large amounts of liquid waste and industrial waste solvents are generated during the production technology. Addressing these is a key issue because their disposal often accounts for the largest proportion of the cost of the entire technology. There is need to develop regeneration processes that are financially beneficial to the plant and, if possible, reuse the liquid waste in the spirit of a circular economy, in a particular technology, or possibly elsewhere. The distillation technique proves to be a good solution in many cases, but in the case of mixtures with high water content and few volatile components, this process is often not cost-effective due to its high steam consumption, and in the case of azeotropic mixtures there are separation constraints. In the present work, the membrane process considered as an alternative; pervaporation is demonstrated through the treatment of low alcohol (methanol and ethanol) aqueous mixtures. Alcohol-containing process wastewaters were investigated in professional process simulator environment with user-added pervaporation modules. Eight different methods were built up in ChemCAD flowsheet simulator: organophilic pervaporation (OPV), hydrophilic pervaporation (HPV), hydrophilic pervaporation with recirculation (R-HPV), dynamic organophilic pervaporation (Dyn-OPV), dynamic hydronophilic pervaporation (Dyn-HPV), hybrid distillation-organophilic pervaporation (D + OPV), hybrid distillation-hydrophilic pervaporation (D + HPV), and finally hybrid distillation-hydrophilic pervaporation with recirculation (R-D + HPV). It can be stated the last solution in line was the most suitable in the terms of composition, however distillation of mixture with high water content has significant heat consumption. Furthermore, the pervaporation supplemented with dynamic tanks is not favourable due to the high recirculation rate in the case of tested mixtures and compositions.

10.
ACS Omega ; 5(25): 15136-15145, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32637786

RESUMO

There are different factors and indices to characterize the performance of a pervaporation membrane, but none of them gives information about their capabilities in the area of liquid separation compared to the most convenient alternative, which is distillation. Membrane flash index (MFLI) can be considered the first and only one that shows if the membrane is more efficient or not than distillation and quantifies this feature too. Therefore, the MFLI helps select the best separation alternative in the case of process design. In this study, the evaluation and capabilities of membrane flash index are comprehensively investigated in the cases of six aqueous mixtures: methyl alcohol-water, ethyl alcohol-water, isobutyl alcohol-water, tetrahydrofuran-water, N-butyl alcohol-water, and isopropanol-water. It must be concluded that the separation capacity of organophilic type membranes is remarkably lower than hydrophilic membranes in all cases of separation. The study of the MFLI is extended with the consideration of other binary interaction parameters like separation factor, permeation flux, selectivity, and pervaporation separation index (PSI) in order to find a descriptive relationship between them. For the same membrane material type, descriptive function can be determined between feed concentration and MFLI and PSI and separation factor, which can be used to calculate each other's value. On the basis of the indices and especially the MFLI, a significant help can be given to the process design engineer to select the right liquid separation alternative and, in the case of pervaporation, find the most appropriate membrane.

11.
Bioresour Technol ; 302: 122793, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32007846

RESUMO

This study investigates enhanced biogas production via co-Hydrothermal gasification (co-HTG) of wet Chlorella vulgaris biomass and hydrochar (HC). Hydrothermal carbonization was applied to valorize struvite containing waste microalgae stream into solid bio-fuel with improved combustion properties. The effects of HC quality and mixing ratio are investigated on biogas yield, composition and carbon conversion ratio. The results show that the application of blending components promotes H2, CH4 formation and selectivity in hydrothermal gasification. The total co-HTG gas yield is increased from 19.13 to 46.95 mol kg-1 at 650 °C and 300 bar by applying 5 wt% HC blending concentration and reduced level of volatile matter content (24.61 wt%). The obtained high hydrogen, methane yields and carbon conversion ratio (19.49, 2.98 mol kg-1, 82.31%, respectively) indicate effective hydrothermal upgrading potentials in case of wet and waste biomass feedstocks.


Assuntos
Biocombustíveis , Chlorella vulgaris , Biomassa , Carbono , Temperatura
12.
Polymers (Basel) ; 11(10)2019 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-31546721

RESUMO

A kinetic and mechanistic investigation of the alcoholysis of phenyl isocyanate using 1-propanol as the alcohol was undertaken. A molecular mechanism of urethane formation in both alcohol and isocyanate excess is explored using a combination of an accurate fourth generation Gaussian thermochemistry (G4MP2) with the Solvent Model Density (SMD) implicit solvent model. These mechanisms were analyzed from an energetic point of view. According to the newly proposed two-step mechanism for isocyanate excess, allophanate is an intermediate towards urethane formation via six-centered transition state (TS) with a reaction barrier of 62.6 kJ/mol in the THF model. In the next step, synchronous 1,3-H shift between the nitrogens of allophanate and the cleavage of the C-N bond resulted in the release of the isocyanate and the formation of a urethane bond via a low-lying TS with 49.0 kJ/mol energy relative to the reactants. Arrhenius activation energies of the stoichiometric, alcohol excess and the isocyanate excess reactions were experimentally determined by means of HPLC technique. The activation energies for both the alcohol (measured in our recent work) and the isocyanate excess reactions were lower compared to that of the stoichiometric ratio, in agreement with the theoretical calculations.

13.
Org Biomol Chem ; 12(40): 8036-47, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25185027

RESUMO

The industrially relevant reaction between nitriles and hydroxylamine yielding amidoximes was studied in different molecular solvents and in ionic liquids. In industry, this procedure is carried out on the ton scale in alcohol solutions and the above transformation produces a significant amount of unexpected amide by-product, depending on the nature of the nitrile, which can cause further analytical and purification issues. Although there were earlier attempts to propose mechanisms for this transformation, the real reaction pathway is still under discussion. A new detailed reaction mechanistic explanation, based on theoretical and experimental proof, is given to augment the former mechanisms, which allowed us to find a more efficient, side-product free procedure. Interpreting the theoretical results obtained, it was shown that the application of specific imidazolium, phosphonium and quaternary ammonium based ionic liquids could decrease simultaneously the reaction time while eliminating the amide side-product, leading to the targeted product selectively. This robust and economic procedure now affords a fast, selective amide free synthesis of amidoximes.


Assuntos
Amidas/síntese química , Hidroxilamina/química , Nitrilas/química , Oximas/síntese química , Teoria Quântica , Amidas/química , Cinética , Estrutura Molecular , Oximas/química , Termodinâmica
14.
Environ Sci Technol ; 47(15): 8948-54, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23808396

RESUMO

The carbon dioxide capture is a more and more important issue in the design and operation of boilers and/or power stations because of increasing environmental considerations. Such processes, absorber desorber should be able to cope with flue gases from the use of different fossil primary energy sources, in order to guarantee a flexible, stable, and secure energy supply operation. The changing flue gases have significant influence on the optimal operation of the capture process, that is, where the required heating of the desorber is the minimal. Therefore special considerations are devoted to the proper design and control of such boiler and/or power stations equipped with CO2 capture process.


Assuntos
Dióxido de Carbono/isolamento & purificação , Combustíveis Fósseis , Mudança Climática
15.
Water Sci Technol ; 67(9): 2025-32, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23656946

RESUMO

Geothermal conditions are extremely favourable in Hungary. Thermal water is accessible in 70% of the territory of the country, with a lowest temperature of 30°C. For energetic purposes, it can be utilized in two different ways: for supplying heat or generating electricity. In relation to utilization, one of the most serious problems derives from the chemical composition of thermal water. The present paper investigates the opportunities of preventing scaling by nanofiltration. Experiments were performed on a Thin Film NF DK membrane, thermostated at 50°C and at a pressure of 3.5 MPa with four different samples (from four Hungarian cities - Eger, Mezokövesd, Bogács, Miskolc-Tapolca) using batch plant. Reproducibility of experiments was also investigated using water samples from Komárom at 50 and 60°C. The results showed that NF DK could achieve high retention of divalent ions. The results of the second phase of the experiments proved that water flux and rejections were very stable. After filtration, the scaling properties of thermal water were simulated with the help of chemical equilibrium modelling software, called Visual MINTEQ 3.0. The results of the permeate samples prove that nanofiltration is a successful process in preventing scaling of thermal water for further use.


Assuntos
Filtração/métodos , Nanotecnologia , Água/química
16.
J Hazard Mater ; 121(1-3): 45-9, 2005 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-15885405

RESUMO

Ternary systems, which contain flammable gas, inert gas and air, were studied in order to give the user an evaluation of the ISO 10156 calculation method for the flammability of gas mixtures. While in Part 1 of this article the fire potential of flammable gases was the focal point, the influence of inert gases on the flammability of gas mixtures was studied in Part 2. The inerting capacity of an inert gas is expressed by the dimensionless K value, the so-called "coefficient of nitrogen equivalency". The experimental determination of K values is demonstrated by using explosion diagrams. The objective of this study was to compare the estimated results, given by ISO 10156, with measurements of explosion ranges based on the German standard DIN 51649-1, given by CERN and CHEMSAFE. The comparison shows that ISO 10156, Table 1, supplies conservative K values, which can be regarded as safe in all cases. Nevertheless, in a number of cases ISO underestimates the inerting capacity, so that non-flammable gas mixtures are considered flammable.


Assuntos
Explosões/prevenção & controle , Incêndios/prevenção & controle , Modelos Químicos , Gases Nobres/química , Guias como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...